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ABSTRACT 
The use of explicit finite difference schemes for low Stefan number problems with moving interface was 
largely abandoned because they require small time intervals (large CPU time) to obtain accurate 
non-oscillatory solutions. This paper uses these type of schemes for better estimations of the dynamics of 
the solid-liquid interface. The scheme in which time and radial intervals are constant, uses a local, 
continuous, time-dependent radial coordinate to define the instantaneous location of the interface. Taylor 
series expansions which result in a polynomial fit are used for forward and backward interpolation of 
temperatures of nodal points in the vicinity of the interface. A distinction is made between the left and 
right position of the interface relative to the closest nodal point. The algorithm handles accurately and 
effectively the non-linearities near the interface thus producing accurate stable solutions with relatively low 
CPU time. The scheme which obviously may be applied to large Stefan number problems, is also suitable 
for time dependent boundary conditions as well as temperature dependent physical properties. The results 
obtained by the scheme were in excellent agreement with ones derived from an approximate analytical 
solution which is applicable in the low Stefan number range. 
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INTRODUCTION 
Unsteady Stefan problems of heat conduction accompanied by fusion or solidification are of 
interest in a large number of engineering applications such as metal or plastics casting, freezing 
of biological material or foodstuffs and latent heat thermal storage systems. Accordingly, there 
is a wealth of technical information in the literature on this subject which include various models, 
analyses, simulations and methods of solution7. The main cause of complexity in such problems 
is associated with the non-linear nature of the liquid-solid interface motion. 

During the 1960s, the explicit finite differences method was used to solve problems of simple 
geometries and boundary conditions. However, with the need to tackle problems of higher 
degree of complexity, the scheme which requires a large CPU, was almost abandoned in favour 
of other methods. Since then, CPU prices have fallen sharply such that this handicap is no longer 
a serious one. Thus the advantages the explicit scheme should be reconsidered. 

One of the explicit finite difference scheme tracks a local, time dependent moving boundary 
between neighbouring nodes on a fixed space grid. Crank1 suggested Lagrangian interpolation 
for near interface approximation in explicit method and used the scheme for solutions of 
one-dimensional problems. 

Murray and Landis2 tackled the problem of one dimensional metal slab solidifcation with 
large (>1) Stefan number. In one of their schemes they used a moving-grid method with a 
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variable time step and in the other, fixed grid and constant time intervals were used. The latter 
method in which linear interpolation between the nodes was used, resulted in a solution which 
led Yao and Prusa4 to conclude that 'despite Murray and Landis's success the ad hoc boundary 
conditions at the solid-liquid interface generally do not completely neutralize pathological 
behavior in the predicted solution from fixed-grid methods'. Springer and Olson3 later extended 
this technique to a cylindrical geometry where backward and forward second order Lagrangian 
interpolation were used to prevent singularities near the interface. Their Lagrangian 
interpolation3 which disregards the region between the interface and its closest nodal point, is 
capable of handling large Stefan (flux) number problems where such neglect is justified. For low 
Stefan number problems the form of interpolation suggested by Springer and Olson3 results in 
oscillation of the temperature field solution. 

The solutions presented here for phase transition in cylindrical geometry with a low Stefan 
numbers, involves a refinement of the Springer and Olson3 treatment at the vicinity of the 
interface. The modified finite difference scheme is capable of solving a wide class of initial and 
boundary conditions problems with a relatively simple algorithm. It results in a non-oscillatory 
stable solution. Taylor series expansion of temperatures near the interface takes into account 
the location of the interface either to the left or to the right of the nearest nodal point. Thus an 
accurate coupling conditions between the solid and liquid regions are provided and temperature 
distributions are continuously updated while the interface propagates. 

For simplicity sake, thermal conductivities kt and ks, heat capacities cl and cs of the liquid 
and solid phases respectively, are assumed to be constant. With only a slight obvious 
modification in the numerical solution scheme, these properties may be allowed to become 
temperature dependent. Thermal stresses effects are assumed negligible since densities ρl and ρs 
are assumed equal and temperature independent. Convection effects within the liquid phase are 
neglected and the heat conduction is assumed to be one dimensional. 

STATEMENT OF THE PROBLEM AND GOVERNING EQUATIONS 
A phase changing material (PCM) confined between two concentric cylinders (Figure 1) is 
initially at an arbitrary axisymmetric temperature distribution (usually below the melting 
temperature). The external surface which is exposed to the ambient temperature, is subjected 
to an axisymmetric heat flux which eventually causes a symmetric melting (or solidification) 
process. The heat fluxes and ambient temperatures boundary conditions may be time dependent. 
Usually heat supply will be assumed at the outer surface and heat removal from the inner. Thus, 
starting at the outer circumference, a melted zone develops in regions where temperatures have 
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risen above the melting point. With the continued heat transfer into the system, the interface 
between the liquid and solid region moves inward while a temperature gradient near the interface 
establishes the conditions for its motion. 

The above description may be summed up by the following characteristics of the problem: 
(1) the geometry and boundary conditions are axisymmetric; (2) the phase transition occurs at 
single temperature; (3) heat transfer—by conduction in the material; (4) the density of the solid 
and liquid are the same ρ = ρl = ρs. 

With temperature T(r,t) being the only dependent variable, Fourier's heat conduction5,6 

equations for each of the regions may be written provided the interface radial position ε(t) (see 
Figure 1) is known. Thus for the inner solid region: 

Similarly, for the outer liquid region: 

At all times, the interface is at the melting temperature, thus: 

The radial speed of propagation of the interface is determined5 by an energy balance across the 
interface which is given by: 

T(r, t) which is the solution for the stated problem is superimposed by the temperature distribution 
in the two phases such that: 

This solution must satisfy the heat conduction equations (1) and (2) as well as the interface 
relations (3) and (4) provided proper boundary conditions at the inner and outer radii as well as 
initial conditions T(r,0) have been satisfied. These boundary and initial conditions are generally 
written in the form: 

where F is heat flux on the surface, and the indices i, o are for the inner or outer radii (ki ≡ ks, 
k0 ≡ kl), respectively. When either of the surfaces is thermally insulated the corresponding left 
hand side of (6) vanishes. 

DIMENSIONLESS REPRESENTATION 
In order to maintain generality of the problem, the following dimensionless variables are defined: 
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Substituting these variables into (1), (2), (3) and (4) the basic equation for assumes a 
dimensionless form: 

respectively. The boundary condition in (6) will assume the form: 

where The initial condition (7) will be 
transformed into: 

MODIFICATION OF THE SPRINGER AND OLSON3 SCHEME 
The Springer and Olson3 scheme does not distinguish between ζ>0 or ζ<0 (see Figure 2 for 
notations) in evaluating the temperature derivatives and therefore the speed of the interface e(t). 

The modification in this work which consists of differentiation between the two situations, 
enables a more precise evaluation of the time and space derivatives near the interface. Such 
refinement allows larger time intervals while maintaining the stability of the solution. Details 
of the modified scheme can be found in Keizman's work8. 

The modified finite difference method for the moving boundary problem was incorporated in 
a numerical scheme. The program can handle a large variety of axisymmetric problems which 
includes low or large Stefan numbers, time dependent boundary condition and temperature 
dependent physical properties of the PCM. The program consists of three major parts. In the 
first, heat-conduction equations are solved to determine temperature profiles in either of the 
two phases (or in one if melting temperature has not yet been reached). The second part uses 
the profiles obtained in the first part to evaluate the interface speed of propagation. The third 
updated the conditions under which the cycle advances as time progresses. Thus, prior to the 
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onset of melting, the procedure proceeds by updating the temperature distribution. Once phase 
change has been detected, the temperature profiles are updated by using current interface position 
as a boundary condition for the heat conduction equations. Each of the regions is then solved 
with proper updated physical properties. The essentials of the program are shown in the 
block diagram depicted in Figure 3. 
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MESH SIZE AND ERROR ANALYSIS 
One of the major advantages of the modified scheme, is that it may be used with relatively large 
radial increments. The interface position which is defined within the radial intervals by the 
continuous variable ζ(t) (Figure 2), provides a higher degree of accuracy in the determination 
of the discontinuity in the temperature gradients. However, it is still expected that the mesh 
size in the radial coordinate will effect the accuracy of the obtained results. Through the numerical 
stability requirement, the determination of the radial mesh size has also a direct bearing on the 
time intervals, such that a finer radial grid means also a finer time interval. In order to determine 
the effect of the radial mesh size on the results, two test cases were run. The first consists of a 
cylinder insulated on both radii, initially in a solid phase at the melting temperature and with 
dimensions and physical parameters corresponding to case A in Tables 1 and 2. A constant heat 
flux F0 causes the PCM to melt within the time tinsm required by the flux to provide the latent 
heat. This time is given by: 

The first of the graphs in Figure 4 exhibits the deviation between evaluated from (17) and 
the one evaluated numerically, as a percentage of the theoretical time, for various number of 
radial increments N. With a coarse mesh of 10 divisions the deviation is and drops to 

when the number of radial intervals increases to 90. 
In the second test case, also shown in Figure 4, the time required for the interface to reach 

half point between the inner and outer radii was evaluated for a conducting inner radius and 
properties listed under case A in Tables 1 and 2. For this case =0.685 for 10 intervals 
and 0.735 for 90 radial intervals. Thus it seems that the coarse mesh approached within 
the fine mesh value. 

COMPARISON BETWEEN NUMERICAL AND APPROXIMATE 
ANALYTICAL METHOD 

The numerical solutions presented in this work, were compared with results of an approximate 
analytical method which is especially suitable for low Stefan number problems. The excellent 
agreement between the results obtained by the two methods when applied to two types of 
boundary conditions is considered as a proof of the capability for the modified finite differences 
scheme to handle low Stefan number problems. The two test problems are described below. 

Table 1 List of fixed parameters throughout the simulations 

Tl = 30°C 
T i= 20 °C 
To = 50°c 
ρl=ρs= 1000 Kg/m3 

ri= 0.01 m 
r0 = 0.02 m 
hi = 0.0W/m2 oC for 

insulating inner radius 
L = 200 KJ/Kg 

h0 = 3.0W/m2 oC 
F0 = 300 W/m2 

ks = 0.5W/m °C 
cps = 2.0 KJ/Kg °C 
Stsi = 0.1 
Sts0=0.2 
h1=l0.0W/m2 °C for 

conducting inner radius 

Initial and boundary conditions: Initial and boundary conditions: 
G = -1.0 Bi, = 0.2 
Fi = 0.0 

Table 2 List of varying parameters 

ki [W/m°C] 
cpl [KJ/Kg °C] 
K(= k1/ks) 
Stli 
Stlo 
F° 
Bi° 

A 

0.75 
3.0 
1.5 
0.15 
0.3 
0.4 
0.08 

Simulation set 

B 

0.75 
2.0 
1.5 
0.1 
0.2 
0.4 
0.08 

C 

0.5 
3.0 
1.0 
0.15 
0.3 
0.6 
0.12 

D 

0.5 
2.0 
1.0 
0.1 
0.2 
0.6 
0.12 
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Insulated inner radius while the outer surface is exposed to constant heat flux and heat 
convection with the surrounding 

Consider an annulus made of PCM in which initially (t=0) the interface coincides with the 
outer radius and the temperature distribution is uniform and equals the melting temperature. 
Heat flux from the outer surface will effect the temperature distribution in the outer liquid region 
and will cause an inward motion of interface. During this process, the initial temperature 
distribution assures a uniform temperature in the inner solid region. Modifications of (10) to 
(15) to correspond the particulars of the described situation, yield: 

For low Stefan numbers the left hand side of (18) may be neglected such that the right hand 
side can be integrated to yield: 

where A and B are integration constants. Boundary condition at the interface expressed by (18) 
requires that: 

Substituting (24) into (23): 

Substituting (25) into (22), the result will be an equation for which becomes: 
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Combining now (26) and (25) and substituting the result in (19): 

which can now be integrated such that: 

The left hand side of (28) is known and therefore the integral may be evaluated numerically to 
provide Radial temperature distribution can be evaluated by substituting in (25). 

Figure 5 exhibits the radial temperature distributions at the time when half of the annulus 
has been melted (e=0.5(r,-+ ro)). Results of the analytical and numerical simulation are almost 
identical. The time required for the interface to reach that point evaluated by the two methods, 
differs by less than 0.5%. 

Heat convection condition on both inner and outer radii while the outer surface is exposed to 
constant heat flux 

This problem starts with the same initial conditions as the previous one. However, heat transfer 
from the inner radius results in a non-uniform temperature distribution in the solid region. The 
two region's temperature distributions require a somewhat more complicated solution which is 
nevertheless quite similar to the previously discussed problem. Following the same steps that led 
to (25) it can be shown that: 

Substituting (31) and (22) into (29) and (30) respectively, the temperature distributions 
and in the two regions as function of the interface coordinate is determined. The time 
dependence can now be determined by substituting the obtained θS and θ1 into (13) from which: 

Numerical integration of (33) will result in an implicit relation which can be substituted 
into (29) and (30) to obtain the temperature profiles. 

Figure 6 depicts the temperature distributions obtained by the finite differences and 
analytical methods when the interface has reached 95% of the radial extend of the annulus. 
Agreement between the two methods although not as good as in the previous case (Figure 5), 
is still excellent. The time required by the interface to reach the 95% point, differ by about 4% 
between the two methods. The analytical method predicts a faster motion basically because it 
does not take full account of the sensible heat. 
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RESULTS AND DISCUSSIONS 
The dependence of the melting process and the moving interface which is associated with it, on 
various parameters of the problem was investigated. For this purpose, four sets of problems 
were numerically solved. Common to all the sets is a group of parameters which were held 
constant for all runs. These fixed parameters which are listed in Table 1, include all the physical 
properties of the solid phase as well as the geometry. Table 2 lists the parameters which are 
unique to each set. Although dimensionless characteristic groups only effect the solution in each 
case, typical dimensional parameters are also given to help gain physical orientation. For each 
set, two different boundary conditions (insulation and heat conduction) were applied on the 
inner radius. Within a given set, the two boundary conditions are characterized by identical 
dimensionless groups. Throughout this part of the work (Figures 7 to 9), a 60 divisions radial 
mesh was used. Based on the previously discussed relations between grid size and accuracies, 
this choice was considered sufficient to demonstrate the results obtained by the modified finite 
differences scheme. 

The purpose of the examples in this study is to concentrate the relative importance of the 
properties of the liquid phase. In order to obtain an equal base for comparison, all cases start 
with a solid phase at a uniform temperature such that (15) = —1.0, and the initiation of 
time count starts when the outer surface reaches the melting temperature. 

The melting time for the various simulations is shown in Table 3. It seems that the melting 
time which is of the order of does not vary appreciably between all the simulated 
configurations. As expected it is shorter for the insulated inner radius case, but not appreciably 
so. This fact is due to the relatively small heat exchange areas which are represented by the inner 
radius. It should also be noted that the melting times in Table 3 are only slightly smaller than 
the total insulation melting time. The latter, which is defined as the time required by the flux 
F0 to totally melt the PCM when it is initially at the melting temperature Tf is given by (16) 
and (17). For the geometry and relevant physical properties of the simulation, = 1.39 h. The 
difference between this time and those in Table 3 are due to the fact that in the simulated cases, 
in addition to the heat flux F0, there is a convection heat transfer driven by the temperature 
difference (Tao-Tr0). 

Figures 7a and 7b exhibit the radial temperature distribution at given times for simulation 
set A. Figure 7a is for an insulated inner radius and Figure 7b for a conducting one. When the 
inner radius is insulated, very shortly after the outer radius has reached the melting temperature, 
the whole cross-section is at an almost uniform temperature close to the melting temperature. 
When heat is allowed to flow through the inner radius then, throughout the melting process, 
gradients of temperature are much more noticeable. This almost constant temperature gradient 
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Table 3 Time required to achieve total fusion 

Dimensionless 

Inner radius 

A 
B 
C 
D 

Insulated 

1.11 
1.11 
1.15 
1.12 

Conducting 

1.28 
1.28 
1.32 
1.30 

Dimensional (h) 

Insulated 

1.233 
1.233 
1.278 
1.244 

Conducting 

1.422 
1.422 
1.467 
1.444 

is the source for energy requirement made by the inner radius. The same sort of behaviour is also 
exhibited in Figure 8 where interface location as function of time is depicted. For the insulated 
inner radius the interface travels faster than for the conducting inner radius case. Figures 9a and 
9b depict this interface propagation speed as function of time and radial position for the two 
inner radius boundary conditions, Figure 9a for inner insulated surface and Figure 9b for the 
conducting one. The initial abrupt jump in these Figures, is a result of an attempt to avoid 
initial singularity so that initially ζ = — 0.1 was assumed at the initiation of the melting process. 

NOMENCLATURE 
Bi Biot number h • r/k 
Cp specific heat (J/Kg°C) 
F(t) heat flux per unit area (W/m2) 
G(r) initial temperature distribution 
h heat transfer coefficient (W/m2 °C) 
k thermal conductivity (W/m °C) 
K thermal ratio kl/ks 
L latent heat (J/Kg) 
N total number of mesh points in radial coordinates 
r radial coordinates (m) 
Stsi Stefan number Cps(T∫—Ti)/L 
Stli Stefan number Cpl(T∫—Ti)/L 
T temperature (K) 
t time (sec) 
Δr space step size (m) 
a thermal diffusivity k/Cp ρ 
ε fusion front position in radial direction (m) 
ρ density (Kg/m3) 
θ dimensionless temperature 
ζ local interface coordinate 

Superscript 
- dimensionless parameter 

Subscripts 
a ambient condition 
f fusion condition 
i inner radial boundary 
ins insulated 
j running index of radial nodal points 
l liquid phase 
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m melting 
0 outer radial boundary 
q index of radial nodal point nearest the interface 
s solid phase 
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